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NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

TECHNICAL NOTE 1950

DAMPING—IN-ROLL CAICULATIONS FOR SLENDER SWEPT-BACK
WINGS AND SLENDER WING-BODY COMBINATIONS

By Harvard Lomax and Max. A, Heaslet

SUMMARY

The damping—in-roll parameter C} is calculated theoretically
for triangular wings on cylindrical bogies and for a class of wings
with swept-back plan forms. The analysis is based on the usual assump—
tions of linearized compressible—flow theory together with the added
restrictions that at the free—stream Mach number M, the product of
1-Mo2 and the streamwise velocity gradient is small. The accuracy of
the results is tested by a comparison with the exact solution of the
linearized equation for a triangular wing and for such plan forms is

shown to increase as reduced aspect ratio (a/ |1-My2| times aspect
ratio) decreases. :

t INTRODUCTION

Theoretical advancements in the study of load distributions over
three—dimensional wings in compressible—flow fields have been achieved
almost entirely under assumptions leading to the linearization of the
basic differential equations of flow. In thls menner the analysis is
resolved in general into the problem of determining solutions of elliptic
and hyperbolic partial differential equations in three dimensions, the
character of the equations being fixed by the magnitude of the free—stream
Mach mmber Mgy. It is possible, however, to study also a class of prob-—
lems associated with the parabolic form of the potential equation; namely,
-cases for which the product of l—M02 and the chordwise perturbation—
velocity gradient is small in comparison with the gradients in their
respective directions of the perturbation velocities perpendicular to the
chord. Such a method was developed in reference 1 for small values of
aspect ratio and was used in reference 2 for swept-back lifting surfaces
at sonic speeds. In the present report the method will be referred to
as a slender—wing theory wherein the term slender infers that the ratio
of the reduced! span to the over—sall length is small. Hence the results

1Reduced span is defined as B times the span, where B 1is equal to

| 1 M2 ]. In general, the term reduced implies that any parameter
which it modifies is multiplied by the factor 8. .
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'presented will apply most closely when the wing is long in terms of its
span, or when the free—stream Mach number is close to unity and the wing
and body do not violate the assumptions made.

Previous investigations (references 3, 4, 5, and 6) corresponding
to this method of approach include, respectively, a complete analysis of
all the stability derivatives of a low-aspect-ratioc triangular wing, a
lifting triangular wing with an arbitrary body of revolution, a lifting
triangular cruciform combination on an arbitrary body of revolution, and
a lifting swept—back constant—chord wing. In order to assess the accu— -
racy of the results presented in these reports, it is necessary to com—
pare their approximate solutions with the exact solutions of the linear—
ized equation. TFor the case of the rolling triangular wing, this can
easily be done since the exact solution has been derived in reference 7.
The results of such a comparison are presented in figure 1 which indi-
cates that in this case the value of PCy for the approximate theory
can be useful up to reduced aspect ratios as high as three.

The obJject of the present report is three—fold: First, to find the
effect on the damping—in-roll parameter Cj of adding a body of revolu—
tion to a triangular wing in order to extend the knowledge of wing—body
interference into the field of lateral stability; second, to find C3
for a particular swept-back wing plan form; and third, to show how the
damping due to roll can be found for swept wings with arbitrary trailing
edges or how trailing edges can be calculated from prescribed span load
distributions. The examples to be given provide sufficient details to
indicate how other cases can be calculated numerically.

A list of important symbols is given in Appendix A.

RESUME OF THE METHOD

Under the assumption that (l-Moz)m is small as compared to oyy
and &gy, the equation for compressible fluid motion, either subsonic
or supersonic, becomes

where ¢ 1is the perturbation-velocity potential and X 1is the free—
stream flow direction. The resulting differential equation (la) shows
that although & can be a function of X 1its value is a consequence of
boundary conditions given along lateral strips. We will seek solutions
to equation (la) for which first, the perturbation velocities vanish at
infinity; second, there is no discontinuity in potential except across

a lifting surface or its trailing vortex sheet; and third, there is no
discontinuity in the vertical velocity anywhere in the field (i.e., no
airfoil with thickness). It is possible, by applying the two—dimensional
form of Green's theorem, to write the solution to equation (la) which
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satisfies all of the aforementioned conditions and relates Wt
(07 in the Z = O plane) to Avg, (the jJump in sidewash, oy in the % = 0O

plane). Under the added restriction that no point exists in or on the

flow field such that >0 §¢>% 0, where ¢ 1is the radial distance from
€

the point, this solution can be written®

[¢]

1
W, = - —
to 2n Y, ‘ (2&)

B(X)

The integral equation (2a) will be solved for the case of rolling
wings., First, however, it 1is convenient to introduce nondimensional
lengths so that the results can be generalized as far as possible. A
satisfactory nondimensional form is obtained by using the equations

Y ) ~
Yy = ——————— u =20
C tan 6 e
v =C vy tan 0
= X
x c w =C wg tan 6 (3)
z vy =C v&t tan 6
7 5 er——
C tan 9

B p C* tan® o ]

where 6 1is the semivertex angle of the wing, p is the rate of roll in
radians per second, C is the root chord, uy, vy, wi,and v, are true of

velocity components, and u, v, w,and vy are the transformed components.
In addition o(x,y,z) replaces ¢(X Y,2).

TRIANGULAR WING WITH BCDY

Consider a wing with an unswept trailing edge mounted on a body of
revolution as shown in figure 2. Applying the transformations given by
equations (3) to equation (la), we find that in every plane perpendicular
to the x axis it 1s necessary to satisfy the equation

Pyy +Pzz =0 (1p)

2This equation is developed in more detail in reference 2.
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subject to the boundary conditions

Vp =0 for r=a, 0< V¥ <2x

0, a< |y[<® o

Wo = uy for =z

w=v=0 for r=m, 0S¥y <20

where a(x) and b(x) are replaced by & and b for convenience in
notation and where r,¥ are polar coordinates in the yz plane and 4
is related to the rate of roll by equation (3). These boundary condi-
tions are not of a type such that they can be substituted directly into
equation (2a), since one condition specifies a radial component which
is, moreover, out of the 1z = 0 plane. However, equation (1) is simply
Laplace's equation so that by introducing complex varisbles 1t is not
difficult to transform the wing and body section (fig. 3(a)) to a strip
along the y axis (fig. 3(b)). Such a mapping function is provided by
the Joukowski tra.n_sformation,s which, if the subscript 1 denotes
conditions in the transformed plane, can be written:

Tty =&+ — , (5)

where ¢ and &, are given by the expressions

n

4 y + iz

(6)

€1 = y1 + iz

By means of equation (5) the wing in the £ plane (the portion of
the axis for which a_<_|y| <b, fig. 3) transforms into the section of
the y; axis in the ¢ plane for vhich 2a = 83 S‘ yl|<_b1 =D + %— .

Further, the body in the ¢ plane (the curve satisfying the equation r=a)
transforms into the part of the ¥: axis for which Og| y1| <ay; = 2a.

Tn this manner the boundary on which the data are specified has been
transformed so that it lies entirely along the yi1 axis. It is next
necessary to inspect what the boundary conditions are in the £ plane.

From the basic theory underlying the use of complex variables, induced
velocities in the physical and transformed planes are related by the
expression

_ e, |
v —diw = (v — _1w;)-d—§- (7)

85ee, for example, "The Elements of Aerofoil snd Airscrew Theory,"
Cambridge University Press, 1943, by H. Glauert.
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from which, since in polar coordinates

dg a 2 ” a\* ‘ |
1 .
Eg_’— {l —-<§-> cos 2 q/J + 1 (;) sin 2 ¥ (8)
it follows immedlately that
2 2

vl[l _.<§.> cos 2 ¢J+ Wy <%> sin 2 ¥ )

T _ |

2 2
w=wl[1—<;a->cos2w:,-v1 <-1i°_‘-> sin 2 ¥ }(9)
2 2 -

[vl cos ¥ + wy sin \;r] [l- (%):, + 2w <—S~> sin ¥ |

Through the use of equation (9), the boundary conditions given by
equation (4) for the ¢ plane can be transformed to the &; plane with
the result (since V¥ = 0 or =)

v

Vr

w1 =0 for 0< |yi|< &1
2 2 .. 2
w, = & J1 y12—a12 +By for a3 < |yi]<ch y (10)
|Y1l Yi™—a) 2 - -
Vi =V1=0 for r1=°°,051[r_<_21r J

The problem has now become one of solving Ldplace's equation for the bound—-
ary conditions given by equation (10). But this problem can be immediately

solved, provided we can invert the integral equation (2a), which in the new
notation," becones

o =k [ AnGee

(2v)
ax b 1 Y1=¥z

4l\Tote that the subscript o (indicating conditions in the Z, = O plane)
has been dropped when in the ¢, plane. This avoids a cumbersome

. notation and should cause no confusion, since in the &, plane only
conditions on the y; axis are to be considered.
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Under the condition
b
f 1 wi(y1)dy:
-b,y N ;12—5’12

reference 8 gives an inversion to equation (2b) which can be written

=0 (11)

3 pPr vi(52)dy c
Avy (y1) = % b7y, ” f et + 20 (12)
% (yi-yo W D12=y22 W b °—y,°
1

where co is en arbitrary constant.

An inspection of w; as given by the boundary conditions in equation
(10) shows that it is an odd function of y; and hence will satisfy equa—
tion (11). . Placing w; in equation (12) and integrating gives

2, 2
Avy (y1) = — 1 (2y,%-0,%) l"“)— ?EH‘- N b12—y12 (-j-t- + arc cos -82-) -
2 Nayy,? 2 2 P2

Y 3 |32 Vb 2wa 2 + a3 4 by 5=y, o

+ (13)

i y141;%-8,2 — a; Wby 5=y, ® N b1E=y1#

where o = -1 for O 5|y1|§a1, and 0 = +1 for a; Slyl IS by,

Now to find A, on the z; =0 plane, the relation

Y1
APy = f Avy (y2)dye (14)
—b, :

in which Av,(y=) as given by equation (13) is used with the result that,
for als Y1 _<_ bl:

AP, = -—% (l + ?2{ arc cos %i-) vy blz—ylg -

y! V 512—612 ( 15) .
by /¥1%—8;2 ' » ]

B 2 2
—_— —8, arc cosh
5 (271 1 )
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where the constant ¢y has been evaluated by the conditions that AP,

must vanish when y; = b;. This can be written in terms of the original
coordinates (fig. 2(b)) and boundary conditions (equation (%)), by
retransforming in accordance with equation (5). Thus, for a<y<b,

_ bk 2 2adb aZ /2 at a* -
o wh (-Gee e ) (5o £)/T g8
2 23y (2 .2
L - 9‘-) arc cosh (2+8%) (b%—a?) - (16)
2x y (7"—eZ) (v3+a2)

Equation (16) represents the solution, in terms of the velocity poten—
tial, for a rolling wing with an unswept trailing edge on a body of revolu—
tion; both a and b are functions of x. The loading coefficient £p

q
can be determined by taking the partial derivative of equation (16)
with respect to x in order to find Au, and then using the relation
Ap _ 2Mug  2mn ‘
7, T, @D

However, it is not necessary to find the loading over the wing if interest
is limited to the determination of the total rolling moment I. If a is
independent of x (i.e., the body is a circular cylinder), then T = (Acp)T E

and the equation
di = p VoI 4Y
vhere dl 1is the increment in span loading, can be used to express

dL = Ydl1 = p Vo, YT aY

Thus

or

L = 2p Vo C2 tan® 6 f y(Acpo)T £ dy (18)
a L] L4

where (AQ,)n is t

) o/ 7. E. S the value of A%, at the tralling edge or where
x =1 1in figure 2(b). Substituting equation (16) in equation (18), one
can derive, after some rather involved integration, the result
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. : P .2
1 a 4 1 [ (a®+s2)
L =_C tan 6 B2 {= | ~———s—— arc tan £ +
pvo ’ n {2 ‘: 8 a v
2 (s2-e?) <a4—6a2s2+s4> arc tan 2 —
s a
et | 1 82 (.22 2| -
-+ = - :
5 5 = (s ) | (19)

The damping—in-roll coefficient CZP based on the wing area including
the part of the wing masked by the body can now be written, if both

sides of the equation are multiplied by B = ‘|1—M02i, in the form
. o '
BCy = --‘2—3 { [(1+32)2 arc tan%—} + 2R(1-R%) (R —6R°+1) arc tan & -
. . ' P
2R + B2 (1-R2)° } (20)

where R = ’:‘ = § (i.e., the ratio of the body dismeter to the wing span)

and Ay 1is reduced aspect ratio which 1s also based on the total wing
area including that part masked by the body.

When R equals zero, equation (20) represents the damping in roll
‘for a wing without body. This value, which will be designated (Cy )w’
is given by : . P

B (C1p), = - ’;A—;- - (21)

and agrees with the value given in reference 3. The ratio of eguation

(20) to equation (21) represents, finally, the effect of adding a circu—
lar cylinder about the line of symmetry of any pointed, low-reduced—aspect—
ratio wing with an unswept trailing edge. This effect 1s shown in figure k4,
The figure shows that the damping in roll is increased a maximum of about

4 percent at a value of R equal to 0.28. '

SWEPT-BACK WING .k

‘The study of the swept—-back wing will be divided into two parts.
The first of these sections will be concerned with the development of a M

special plan form which 1s relatively easy to treat anelytically, while the
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second section will be devoted to the examination of plan forms with
arbitrary trailing edges or with arbiltrary span load distributions.

Special Plan Form

Consider a wing with a plan form similar to that shown in figure 5.
The analysis of such a wing is best presented by considering separately
the three regions shown in figure 5(b) which correspond,respectively,to
values of x for which x<1, 1<x<s, and s<ZXx.

Region I (x<1).— Sirce the loading in each region is independent of
the flow at all points downstream of it, the solution for the pressures
in region I is the same as that for a triangular wing. Hence region I
is simply a speclal case of the preceding section for which the body
diemeter R equals zero.

Region II (1 <x< s).— Although each region is certainly independent
of subsequent ones, the vorticity of upstream regions must be transported
downstream through all subsequent transverse planes. This increases
somewhat the complexity of the problem.

In order to find the solution for the loading in region II, it is
again necessary to satisfy equation (l), but this time subject to the
boundary conditions:

Wo = Hy for a< |y|<bd
u =w=0 for r =w, 0< {y <2x (22) -
Mo =0 for 0< |yl<a

where® a(x) and b(x) are, as in the preceding section, replaced by a
and b.

It is apparent that no transformation of the plane is necessary for
the use of the integral equation (2), since the boundary conditions are
already specified in the 2z = 0 plane, Making use of the fact that AQ
must be an odd function of y, and hence its derivative Av, even,
equation (2b) can be written

'b2
1 G ar
Yo op=o— f Glx,ma)dny (23)
y 2n -1 ‘

SWhereas in the wing-body section a(x) represented the radius of the
body, here a(x) represents the distance from the x axis to the
trailing edge. §Since the two sections are entirely separate, this

should cause no confusion.
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where
2
n=vy
and (2)4’)
Av.(x,y)
G(X,n) = _.Qy—i——-

Before the solution to equation (23) can be obtained, however, the behav—
jor of the flow in the vortex wake, the region for which -a<y<a, must
be discussed.

Since an increase in AQ, corresponds to a loading AP, at any
point behind the wing must be the same as APy at the trailing edge for
the same y. If the equation of the trailing edge is written in either
of the forms

y = a(x)
(25)

x = a*(y)

then Agpy(x,y) equals Ago(a*,y) for x>a¥*. Taking the partial derivative
of Ago(a*,y) with respect to y gives

dAPo(a*,y) _ NPo(a*,y) dax + [aA(Po(X;Y)j‘
X=8%

oy dax oy Jy
which can also be written in the form
OAG, (a* V.C dax* |
%(e%,y) _ Vo 227 2p(a%,3) | pvg(e,y) (26)

oy 2 dy q

Applying the Kutta condition, the value of the load coefficient at the
trailing edge %B(a*,y) must be zero. Equation (23) can now be written

2 2 '
ho=—l fa G*(na)dny 1 b G(x,my)dny (27)
2n A N1 2n lo N1

where G*(1) = G(a*,n1).

The value of G*(n,) depends, of course, on the equation of the
trailing edge. It is convenient at this stage of the analysis to choose
the value of AgQ, in the wake (since applying the Kutta condition to
aAq)o(x)Y)'

equation (26) yields G*(ny) = 1 [ )
y

7 ] %’ giving A®, is equivalent
x=8
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to specifying G*(n.)) and find the resulting trailing edge rather than
to proceed in the more straightforward way of first completely specifying
the wing plan form. However, if Ag, is expressed in the form

A
o . Byy + Boy2 + .+ . . + Bpy~ (28a)

it will be shown that both the trailing edge and the final value of Czp

can be given in terms of the Bp's, and, therefore, quite general types

of plan forms can be analyzed. Our purpose is to present in some detail
the simplest example in this section and to develop the general discussion
later. '

Figure 6 shows the variation of AP, in the wake behind a triangu—
lar wing (equation (15) with a = 0, b = 1). A reasonable first choice of
AP, in the wake of a swept-back wing would seem to be the straight—line
continuation of the slope at the origin of figure 6. This leads to the
equations

Bl = l, Bz = BS =, ..=0
so that equation (28a) becomes
e*(ny) = —u/ Mm ) (28b)

[S]
If G(x,n1) is defined by the relation

2
G(x,n1) = Gi(x,m1) + B(x) /2= (29)
b -

\

where H(x) is a function to be determined independent of 13, then
equation (27) can be written

-

a2 R
oo \jf dny __H(X) __ 1 \/P Gy (x,my)an; (30)
2% & (emldm 2 2 J=2  M-m

It is now possible to invert equation (30) by means of equation (12),
wherein a2 now replaces —b; and b® replaces b;. First we notice
that the condition imposed by equation (11) is satisfied if

6
The choice of such a definition is, of course, not obvious. TIts advis—
ability depends entirely on the simplification which it introduces
into the subsequent analysis.
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dny _ H(x) dn

8.2
f2 ‘[”"g;o (nn)Wm 2 } J(ba_ﬂ)‘(n_‘f) | "

or, upon integrating, that

o) % (= -5)

where K 1is the complete elliptic‘integral of the first kind of modulus
k = %w The solution for Gi(x,n) in the interval a <|y|<b becomes

a2
uE _ B inz Jd,h
R T ex \
Gi(x,m) = % V(t2—) (n—a?) [ f° (n1nz) ¥ 12 )
b2 (nenn)  (9Pn) (nae)

The single integral evaluates to give zero, and the order of the double
integral can be reversed and integrated with respect to n; so that
finally there results , .

alxn) = = £ TF ) [
: o (12 na2(b2—2) (a®-n2)

2

dna

Using equation (29), we can now write

2
2% anp V(1P (n-e3) z
G(x,q) = & Lo LK néf_. (31)
1 ( ) V/ > > LS b e
o M2) Jn1(b3=2) (a%2)
Now using the equality
1 a®
(80 g =T =5 f G(z,n)an
b2

it is possible to derive, after some manipulation, the relation

I'' = —ub ik'ZK—E+k>-(n—K-> B p2xr2 (32) .
2 » v/ 2
wvhere K and E are complete elliptical integrals of the first and ’ .
second kind, respectively, of modulus k =+1 — k2 = %.
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For the Kutta condition to apply at the trailing edge, equation (32)
must reduce to the expression I' = — Jp.g, M = —a in the interval

—t <y <t (region ITI, fig. 5). This leads to the equation for the trail-
ing edge in region II given by

- 2kB
k2

(33)

Figure 7 shows a plot of the trailing edge derived from equation (33).
The asymptotic slope of this edge is U45° and the asymptotic width of the
wing (i.e., b—a as b—> w) can be shown to be l/n:. By means of this
plot, it is possible to find the relation between aspect ratio and semi—
span s, for wings of the type shown in figure 5. This was done numeri-—
cally and the results are shown for two different tip conditions in fig—
ure 8.

Region ITI (X>s).— Consider for a moment that the wing plan form
ends with region IT; that is, the wing has the form designated as type
b in figure 8. The downwash in any plane behind the straight portion
of the trailing edge of such a wing is determined by substituting equa-
tions (31) and (28b) into equation (23) and integrating. Designating

this value of W, as W, there results for t< Iyl _<_ s

N
Ve = T

and for 0< |y| <t

i G)/FF]Hn () - )

where E; (%) end F, <%> are the incomplete elliptic integrals with

) (34)

'—‘\l'd

modulus k; = t/s and argument y/t, and K; 1is the complete form of

F, <%> . It should be noticed that behind the straight portion the flow

is turning as if the wing were continued. Hence, any surface behind the
straight part of the trailing edges of the type b wing will support
Zero loading,provided, of course, this surface is also rotating at the
rate w = py. Thus the solution for the type a wing is exactly the
same as that for the type b wing with the added condition that the
loaeding is zero over portions of the wing for which x>s.

Results for entire wing.— The results for the entire wing plan
form can be summarized in the form of the total rolling moment and
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subsequently the value of C; . The rolling moment for both types of
: P

wings is found from the expression

2 2 s
L = 2pVy C” tan™ 6 f yray (35)
o

Using the solution for I given by operating on equation (31), that is
for 0< |yl <t

T =—uy

and for tSIyISS

2 2 2
r=_2 fyd'ﬂ ftdﬂl / (s2-q) (n—t3) LB fy !l:f-an
L [ mm n1(s2=n1)(t2—n,) 2 J 2 VAR

in equation (35) and reversing the order of integration, the value of the
moment can be obtained in coefficient form as

BC1 4 2 _ :
__I_)_=__1.__f‘_1'_._<_3_,rklt +_5_]il_____%.El_lklt21& (36)
B tan 6 4B tanp \8 6s 3 s

where again B has been introduced as a multiplier of spanwise and verti-—

cal lengths and where k; = t/s = f1 — k;'°. Equation (36) is plotted
in figure 9 for the plan—form-aspect-ratio relation given in figure 8
When k; 1s zero, equation (36) reduces to equation (21) for the triangu—

lar wing.
Arbitrary Plan Form

If all the terms in equation (28a) are considered then equation (28b)
becomes

n—2

m ————
G*(n1) = — b Z By (28¢)

n=1

and, using equation (29), equation (30) can be written
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m g2 =2 ' 12
- }: ~¢nB, \jﬁ M1 2 dny _ H(x) - E; k/P G1(x,m1)dna (37)
Lyoen N1 2 2t v 111

Now if
n-1 ~K na
H(x)—Eu—-—-Zan f sn u du
n=1 o
then
/ a 2 d
Gl(xy"l) = — (ba—q)(n—a ) f %—_—_; f IU' N1
( —‘12) ( 2)(712—3 ) =1
(38)
and,finally,
b oo n— pK n+1 . n
I' = %— nBpa \/P [ (1+%%)sn™ " u-—2oKk?sn uJ du — p }: Bpa -
n=1 ° n==1
2 g K . \
2u F v7kr® +.ﬂ%-ﬁ Z DBpa™ + f sp”Mu du (39)
n=1 °

In order to satisfy the Kutta condition, I' in equation (39) must equal

m
—4 }: Bnan. Thus, the equation of the trailing edge becomes
n=1

- 2 z nBga” | (40)

n=1

and, using equation (35), the expression for rolling—moment coefficient
becomes

m ‘ 2 4 ;
A n—=1 N~ - 1-3k; 3nk, !
P . r z mBoky, s <k121n+2 + Ir> - (M)
B tan & k4sp tan @ 2 32

BCy
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where

. i ‘ . — ,
I, = f (snn l11-k25nn+1u> du = f frn_l /—3_3-1-_-2-— ar (42)
, 0 .

(o}

Values of the first six I, are given in Appendix B.

Since the trailing edge must pass through the point a = O when
x = 1, the value of B; must always be 1. The other coefficients, 7
however, are at our disposal. These can be determined by specifying the
points through which the trailing edge must pass and setting up a series
" of simultaneous equations using equation (40). - '

Two examples have been considered which represent a wing with very
little taper (fig. 10(a)) and a wing which tapers to a point (fig. 10(bv)).
The trailing edge for the former of these wings, type ¢, was found by
finding the values of Bz in equation (40) which made a = 0.4 when
b = 1.2 and all the BYs with higher subscripts were zero. The trailing
edge of the latter of the two wings, type d, was determined by finding Bp,
By, By, and Bs such that the edge passed through four points which were
on a straight line joining the root with the tip. Figure 11 shows the
actual edge resulting for the type 4 wing together with the intended
straight line and the points chosen. The slight scallop indicated in the
trailing edge was found in the case of the triangular wing (i.e., when
this method was used to solve the delta—shaped wing and the results
compared with the exact solution of the linearized equation)to give a

BCy . :
E—%E:%g sbout 5 percent too low. However, this was considered

to be sufficiently accurate to establish the trend which is shown for
this type of wing in figure 12.

Ames Aeronautical Laboratory,
National Advisory Committee for Aeronautics,
Moffett Field, Calif., July 22, 1949,

APPENDIX A

TABLE OF IMPORTANT SYMBOLS

a, a(x) radius of cylindrical body in transformed space
(in portion of report titled "Triangular Wing with
Body") .

a, a(x), a*(y) equation of trailing edge of swept wing in transformed
‘ space (in portion of report titled "Swept-Back Wing,”

see equation (25))
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A(X)

Ap

b, b(x)
B(X)
C

Cy

v’

17
radius of cylindrical body or equation of trailing edge

reduced aspect ratio, J'l—Mozl times aspect ratio
equation of wing leadiﬁg edge in transformed space
equation of wing leading edge

root chord of wing

rolling moment
(2¢8) (wing area)

acl }
(psS/V,)

damping—in—roll coefficient [

damping—in-roll coefficient of wing alone

complete elliptic integral of the second kind with
modulus k;

. 1-k,°t2
incomplete elliptic integral — dt
1~k
o

function introduced in equation (24)

complete elliptic integral of the first kind with modu—
lus kl

L/ﬁx dt
| (1262) (142)

incomplete elliptic integral

nlt oip

1ift
rolling moment

Mach number of free stream
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ug, vt, Wi

X, Y, 2
X, Y, Z
B

Ap

q

NACA TN 1950

rate of roll, radians per second

dynamic pressure < %pV02>

radial length in pblar coordinates
ratio of body diameter to wing sp&n
wing semispan in transformed space
wing semispan

Jacoblan elliptic function .

distance used in study of swept-back wing (see fig.'5)

free—stream velocity

transformed perturbation-velocity components in x,y,Zz
directions, respectively

radial component of velocity

perturbation-velocity components in X,Y,Z directions,
respectively

transfbrmed Cartesian coordinates
Cartesian coordinates in physical plane

v | 1"M02|

loading coefficient, )
pressure on lower surface — pressure on upper surface
a

spanwise distribution of circulation
y2 .

semiapex angle of wing

pC2 tan2 6

complex variable (y + iz)
free—stream density

perturbation potential
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v] pert'urbation potential in transformed coordinates
Ay o Jump in potential in fhe z = 0 plane
¥ polar angle

.APPEN'DIX B

Exact expressions for Iy, Iz, . . . Ige

I, = E

1 k'™ . 14k
Io == + 4 1n ==
2752 "k 1=x

5 3%2 [ k'K — (1-2k2) E]

H
il

1+k
in
2k 1k

—
1

1_ 1k <1 14367

2(1-4%2)(1+4k%) |E-E 1-4k%
Is = [ 2+ THke k2 T ke &
(1+3k2)(3-5k2)  (1-%2)(1+2k245k4) 1+k
Ig=— + in

L8k 4 32k> 1%

Notice thet when k=1, Iy = 3‘-;

Series expansions for I, Iz, . . . I6 for k<1.
1 (13 ya_ 5 e )
Il‘e<l T er Tttt
1 1 1 :
=1 —-=k2 -« — k% ~=—KkB=- ., .
e 3 15 3
_n (132 5 ya_ 3 e >
Ia_#<1 R T
I4=?._.Lt_k2_?._k4__§_k6__ .
3 15 35 315
(a5 e 3Dy By .. )
Is 16<3 y < 128qu 512 e

B_8y2_16 44 16 15
5 3 315 - 693
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Figure |.- Comparison of two theoretical results for a
rolling triangular wing.
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10

7 2 4 6 8 10
R Diameter of body
.
Span of wing

Figure 4.- Effect on damping in roll of a cylindrical
body mounted on a pointed wing with unswept
trailing edge.
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